首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12256篇
  免费   2100篇
  国内免费   1954篇
测绘学   885篇
大气科学   3691篇
地球物理   2745篇
地质学   3413篇
海洋学   1045篇
天文学   131篇
综合类   674篇
自然地理   3726篇
  2024年   19篇
  2023年   139篇
  2022年   385篇
  2021年   555篇
  2020年   556篇
  2019年   595篇
  2018年   523篇
  2017年   665篇
  2016年   639篇
  2015年   694篇
  2014年   804篇
  2013年   1170篇
  2012年   739篇
  2011年   810篇
  2010年   668篇
  2009年   801篇
  2008年   792篇
  2007年   789篇
  2006年   721篇
  2005年   642篇
  2004年   507篇
  2003年   436篇
  2002年   387篇
  2001年   317篇
  2000年   302篇
  1999年   230篇
  1998年   241篇
  1997年   254篇
  1996年   164篇
  1995年   173篇
  1994年   155篇
  1993年   108篇
  1992年   90篇
  1991年   62篇
  1990年   46篇
  1989年   34篇
  1988年   27篇
  1987年   14篇
  1986年   15篇
  1985年   16篇
  1984年   7篇
  1983年   5篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
91.
The confounding effects of step change invalidate the stationarity assumption of commonly used trend analysis methods such as the Mann–Kendall test technique, so previous studies have failed to explain inconsistencies between detected trends and observed large precipitation anomalies. The objectives of this study were to (1) formulate a trend analysis approach that considers nonstationarity due to step changes, (2) use this approach to detect trends and extreme occurrences of precipitation in a mid‐latitude Eurasian steppe watershed in North China, and (3) examine how runoff responds to precipitation trends in the study watershed. Our results indicate that annual precipitation underwent a marginal step jump around 1995. The significant annual downward trend after 1994 was primarily due to a decrease in summer rainfall; other seasons exhibited no significant precipitation trends. At a monthly scale, July rainfall after 1994 exhibited a significant downward trend, whereas precipitation in other months had no trend. The percentage of wet days also underwent a step jump around 1994 following a significant decreasing trend, although the precipitation intensity exhibited neither a step change nor any significant trend. However, both low‐frequency and high‐frequency precipitation events in the study watershed occurred more often after than before 1994; probably as either a result or an indicator of climate change. In response to these precipitation changes, the study watershed had distinctly different precipitation‐runoff relationships for observed annual precipitations of less than 300 mm, between 300 and 400 mm, and greater than 400 mm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
92.
Land use/cover (LULC) and climate change are two main factors affecting watershed hydrology. In this paper, individual and combined impacts of LULC and climate change on hydrologic processes were analysed applying the model Soil and Water Assessment Tool in a coastal Alabama watershed in USA. Temporally and spatially downscaled Global Circulation Model outputs predict a slight increase in precipitation in the study area, which is also projected to experience substantial urban growth in the future. Changes in flow frequency and volume in the 2030s (2016–2040) compared to a baseline period (1984–2008) at daily, monthly and annual time scales were explored. A redistribution of daily streamflow is projected when either climate or LULC change was considered. High flows are predicted to increase, while low flows are expected to decrease. Combined change effect results in a more noticeable and uneven distribution of daily streamflow. Monthly average streamflow and surface runoff are projected to increase in spring and winter, but especially in fall. LULC change does not have a significant effect on monthly average streamflow, but the change affects partitioning of streamflow, causing higher surface runoff and lower baseflow. The combined effect leads to a dramatic increase in monthly average streamflow with a stronger increasing trend in surface runoff and decreasing trend in baseflow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
93.
Accepting the concept of standardization introduced by the standardized precipitation index, similar methodologies have been developed to construct some other standardized drought indices such as the standardized precipitation evapotranspiration index (SPEI). In this study, the authors provided deep insight into the SPEI and recognized potential deficiencies/limitations in relating to the climatic water balance it used. By coupling another well‐known Palmer drought severity index (PDSI), we proposed a new standardized Palmer drought index (SPDI) through a moisture departure probabilistic approach, which allows multi‐scalar calculation for accurate temporal and spatial comparison of the hydro‐meteorological conditions of different locations. Using datasets of monthly precipitation, temperature and soil available water capacity, the moisture deficit/surplus was calculated at multiple temporal scales, and a couple of techniques were adopted to adjust corresponding time series to a generalized extreme value distribution out of several candidates. Results of the historical records (1900–2012) for diverse climates by multiple indices showed that the SPDI was highly consistent and correlated with the SPEI and self‐calibrated PDSI at most analysed time scales. Furthermore, a simple experiment of hypothetical temperature and/or precipitation change scenarios also verified the effectiveness of this newly derived SPDI in response to climate change impacts. Being more robust and preferable in spatial consistency and comparability as well as combining the simplicity of calculation with sufficient accounting of the physical nature of water supply and demand relating to droughts, the SPDI is promising to serve as a competent reference and an alternative for drought assessment and monitoring. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
94.
The south‐west region of the Goulburn–Broken catchment in the south‐eastern Murray–Darling Basin in Australia faces a range of natural resource challenges. A balanced strategy is required to achieve the contrasting objectives of remediation of land salinization and reducing salt export, while maintaining water supply security to satisfy human consumption and support ecosystems. This study linked the Catchment Analysis Tool (CAT), comprising a suite of farming system models, to the catchment‐scale CATNode hydrological model to investigate the effects of land use change and climate variation on catchment streamflow and salt export. The modelling explored and contrasted the impacts of a series of different revegetation and climate scenarios. The results indicated that targeted revegetation to only satisfy biodiversity outcomes within a catchment is unlikely to have much greater impact on streamflow and salt load in comparison with simple random plantings. Additionally, the results also indicated that revegetation to achieve salt export reduction can effectively reduce salt export while having a disproportionately smaller affect on streamflows. Furthermore, streamflow declines can be minimized by targeting revegetation activities without significantly altering salt export. The study also found that climate change scenarios will have an equal if not more significant impact on these issues over the next 70 years. Uncertainty in CATNode streamflow predictions was investigated because of the effect of parameter uncertainty. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
95.
Climate change impact assessments form the basis for the development of suitable climate change adaptation strategies. For this purpose, ensembles consisting of stepwise coupled models are generally used [emission scenario → global circulation model → downscaling approach (DA) → bias correction → impact model (hydrological model)], in which every item is affected by considerable uncertainty. The aim of the current study is (1) to analyse the uncertainty related to the choice of the DA as well as the hydrological model and its parameterization and (2) to evaluate the vulnerability of the studied catchment, a subcatchment of the highly anthropogenically impacted Spree River catchment, to hydrological change. Four different DAs are used to drive four different model configurations of two conceptually different hydrological models (Water Balance Simulation Model developed at ETH Zürich and HBV‐light). In total, 452 simulations are carried out. The results show that all simulations compute an increase in air temperature and potential evapotranspiration. For precipitation, runoff and actual evapotranspiration, opposing trends are computed depending on the DA used to drive the hydrological models. Overall, the largest source of uncertainty can be attributed to the choice of the DA, especially regarding whether it is statistical or dynamical. The choice of the hydrological model and its parameterization is of less importance when long‐term mean annual changes are compared. The large bandwidth at the end of the modelling chain may exacerbate the formulation of suitable climate change adaption strategies on the regional scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
96.
To compare the impacts of river discharge on the surface water quality of the Xiangjiang River in China, 12 surface water quality parameters recorded at 31 sampling sites from January 1998 to December 2008 along the river and its main tributaries were analyzed. Significantly higher concentrations of total nitrogen, ammoniacal nitrogen, and total phosphorus, and biochemical oxygen demand were observed during low‐flow periods than during high‐flow periods, implying a higher risk to local residents drinking untreated water during low‐flow periods. Pollution indexes, including the inorganic pollution index and integrated pollution index (IPI), were negatively related to impervious surface area (ISA) and cropland area (CLA) when ISA (CLA) was less than 160 (3000) km2. However, the relationship was positive when ISA (CLA) was larger than 160 (3000) km2, which provided a reasonable explanation for the observed spatial patterns of water quality. Distinct increasing temporal trends for two kinds of pollution indexes were also found. The annual ISA was significantly related to the rapid degradation of water quality from 1998 to 2008, with correlation coefficient (r) values of 0.816 (p = 0.002) and 0.711 (p = 0.014) for the organic pollution index (OPI) and IPI, respectively. However, annual rainfall was negatively correlated with the two indexes with r values of 0.785 (p = 0.002) and 0.448 (p = 0.093) for OPI and IPI, respectively. Our study highlights that decision makers should be more aware of recent increases in the pollution of the Xiangjiang River, especially at downriver sites and during low‐flow periods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
97.
青藏高原气候变化若干前沿科学问题   总被引:9,自引:2,他引:7  
在全球变化的背景下,青藏高原冰冻圈和大气圈正在发生快速变化,对“亚洲水塔”和“第三极”的生态环境带来深刻影响。研究并梳理了近年来青藏高原气候变化的若干前沿科学问题的研究进展,如高原极端气候事件变化及其与大气环流的关系;高原变暖放大效应及海拔依赖型变暖的物理机制;再分析资料在高原气候变化应用的适用性;气候模式在高原资料稀缺地区的模拟偏差特征及不确定性;以及不同升温阈值下高原气候变化的预估及其风险等。同时展望了高原气候变化研究的前沿问题和科学难点。认清高原气候变化研究的前沿科学问题,可为“一带一路”倡议顺利实施提供科学依据。  相似文献   
98.
王秀娜  丁永建  王建  赵传成 《冰川冻土》2021,43(4):1179-1189
利用1960—2017年日降水量资料,采用线性倾向趋势分析、滑动分析和泰森多边形法等,对河西地区多年降水时空变化特征及不同量级降水日数及降水强度的变化趋势进行了研究。结果表明:河西地区年均降水量为99.0 mm,呈现明显的逐年上升趋势,平均倾向率为8.72 mm?(10a)-1,月降水量为单峰分布,5—10月夏秋汛期降水量占年降水量的89.2%,各季节降水量均呈现显著上升趋势;年均降水日数为36.7天,呈现明显的上升趋势,增幅为3.18 d?(10a)-1,降水日数主要分布在夏季,约占总降水日数的54.6%;平均降水强度为2.70 mm?d-1,呈现减弱趋势,变化速率为-0.04 mm?d-1?(10a)-1;零星小雨和小雨降水日数均呈现增加趋势,而二者平均降水强度均为下降趋势,小到中雨降水日数和降水强度呈现增加趋势,中雨及以上的降水变化趋势不明显。  相似文献   
99.
深水源—汇系统对多尺度气候变化的过程响应与反馈机制   总被引:2,自引:2,他引:0  
源—汇系统对多尺度气候变化的响应与反馈是当前深水沉积学研究的前缘和新动向。通过梳理外陆架—深水盆地沉积物搬运分散系统(深水源—汇系统)对从构造尺度到人类尺度气候变化的过程响应,揭示了两种(迟滞和瞬态)深水源—汇系统的过程响应与反馈机制。迟滞响应深水源—汇系统的过渡区较宽、响应尺度较大(Teq≥104年),有利形成条件为:宽陆架且无峡谷延伸到内陆架以及冰室气候;其沉积物搬运分散过程主要受到可容空间的驱动(吻合经典的Exxon层序地层学理论)。在迟滞响应深水源—汇系统中,构造—轨道尺度的冰室气候期浊流活动较强、形成的沉积体相对富砂,温室气候期浊流活动较弱、形成的沉积响应相对富泥;而亚轨道—人类尺度的气候波动常被快速海平面上升所“淹没”、不能调控深水沉积物搬运分散过程。瞬态响应源—汇系统过渡区较局限、响应尺度较小(Teq≤104年),有利形成条件有:窄陆架、温室气候、峡谷头部和河口相接或相邻、断陷湖盆以及三角洲越过陆架坡折,其沉积物搬运分散过程对物源供给更为敏感,主要受物源供给驱动(偏离经典的Exxon层序地层学理论)。在瞬态响应深水源—汇系统中,不论是构造—轨道尺度的气候变化还是亚轨道—人类尺度的气候波动,只要其能够诱发物源供给的变化(而不论可容空间是上升还是下降),都能够对深水源—汇过程响应进行调控。  相似文献   
100.
政府间气候变化专门委员会(IPCC)于2021年8月发布了第六次评估报告第一工作组报告《气候变化2021:自然科学基础》。该报告基于最新的观测和模拟研究,评估了冰冻圈变化的现状,并采用CMIP6模式对未来变化进行了预估。报告明确指出,近十多年来冰冻圈呈现加速萎缩状态:北极海冰面积显著减小、厚度减薄、冰量迅速减少;格陵兰冰盖、南极冰盖和全球山地冰川物质亏损加剧;多年冻土温度升高、活动层增厚,海底多年冻土范围减少;北半球积雪范围也在明显变小,但积雪量有较大空间差异。冰冻圈的快速萎缩加速海平面的上升。未来人类活动对冰冻圈萎缩的影响将愈加显著,从而导致北极海冰面积继续减少乃至消失,冰盖和冰川物质将持续亏损,多年冻土和积雪的范围继续缩减。报告也提出,目前冰冻圈研究仍存在观测资料稀缺、模型对各影响因素的敏感性参数和过程描述亟需提升、对吸光性杂质的变化机制认知不足等问题,从而影响了对冰冻圈变化预估的准确性,未来需要重点关注。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号